login
A309679
G.f. A(x) satisfies: A(x) = A(x^5) / (1 - x)^2.
2
1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 198, 221, 244, 267, 290, 324, 358, 392, 426, 460, 508, 556, 604, 652, 700, 765, 830, 895, 960, 1025, 1110, 1195, 1280, 1365, 1450, 1561, 1672, 1783, 1894, 2005, 2148, 2291, 2434, 2577
OFFSET
0,2
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(5^k))^2.
MATHEMATICA
nmax = 58; A[_] = 1; Do[A[x_] = A[x^5]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 58; CoefficientList[Series[Product[1/(1 - x^(5^k))^2, {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2019
STATUS
approved