login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309677 G.f. A(x) satisfies: A(x) = A(x^3) / (1 - x)^2. 3
1, 2, 3, 6, 9, 12, 18, 24, 30, 42, 54, 66, 87, 108, 129, 162, 195, 228, 279, 330, 381, 456, 531, 606, 711, 816, 921, 1068, 1215, 1362, 1563, 1764, 1965, 2232, 2499, 2766, 3120, 3474, 3828, 4290, 4752, 5214, 5805, 6396, 6987, 7740, 8493, 9246, 10194, 11142 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Self-convolution of A062051.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: Product_{k>=0} 1/(1 - x^(3^k))^2.

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,

      b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(3^i)))

    end:

a:= n-> add(b(j, ilog[3](j))*b(n-j, ilog[3](n-j)), j=0..n):

seq(a(n), n=0..52);  # Alois P. Heinz, Aug 12 2019

MATHEMATICA

nmax = 52; A[_] = 1; Do[A[x_] = A[x^3]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

nmax = 52; CoefficientList[Series[Product[1/(1 - x^(3^k))^2, {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]

CROSSREFS

Cf. A005704, A062051, A120880, A171238, A309678, A309679.

Sequence in context: A008810 A176893 A144677 * A058616 A298435 A261539

Adjacent sequences:  A309674 A309675 A309676 * A309678 A309679 A309680

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 05:46 EST 2020. Contains 332321 sequences. (Running on oeis4.)