OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1669
FORMULA
a(n) ~ c * 4^n / n^(3/2), where c = 1/(2*sqrt(Pi)) * Product_{k>=1} (2^k*(2^(k-1) - sqrt(4^(k-1) - k))/k) = 0.711438694828613555153724789...
MAPLE
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
b:= proc(n, i) option remember; `if`(n=0 or i=1,
C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 12 2019
STATUS
approved