login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008812 Expansion of (1+x^5)/((1-x)^2*(1-x^5)). 11
1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 25, 30, 35, 40, 45, 52, 59, 66, 73, 80, 89, 98, 107, 116, 125, 136, 147, 158, 169, 180, 193, 206, 219, 232, 245, 260, 275, 290, 305, 320, 337, 354, 371, 388, 405, 424, 443, 462, 481, 500, 521, 542, 563, 584, 605, 628, 651, 674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 0..n arrays of six elements with zero second differences. - R. H. Hardin, Nov 16 2011

Also number of ordered triples (w,x,y) with all terms in {1,...,n+1} and w +5*y = 4*x. Also the number of 3-tuples (w,x,y) with all terms in {0,...,n+1} and 5*w = 2*x +3*y. - Clark Kimberling, Apr 15 2012

a(n) is also the number of 5 boxes polyomino (zig-zag patterns) packing into (n+3) X (n+3) square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Kival Ngaokrajang, Illustration of initial terms

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).

FORMULA

G.f.: (1+x^5)/((1-x)^2*(1-x^5)).

a(n) = 2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. H. Hardin, Nov 16 2011

EXAMPLE

For n = 5 there are 8 0..5 arrays of six elements with zero second differences: [0,0,0,0,0,0], [0,1,2,3,4,5], [1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3,3,3], [4,4,4,4,4,4], [5,4,3,2,1,0], [5,5,5,5,5,5].

MAPLE

seq(coeff(series((1+x^5)/((1-x)^2*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 12 2019

MATHEMATICA

CoefficientList[Series[(1+x^5)/(1-x)^2/(1-x^5), {x, 0, 65}], x] (* or *) LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 8, 11}, 65] (* Harvey P. Dale, Apr 17 2015 *)

PROG

(PARI) Vec((1+x^5)/(1-x)^2/(1-x^5)+O(x^65)) \\ Charles R Greathouse IV, Sep 25 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^5)/((1-x)^2*(1-x^5)) )); // G. C. Greubel, Sep 12 2019

(Sage)

def A008812_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((1+x^5)/((1-x)^2*(1-x^5))).list()

A008812_list(65) # G. C. Greubel, Sep 12 2019

(GAP) a:=[1, 2, 3, 4, 5, 8, 11];; for n in [8..65] do a[n]:=2*a[n-1]-a[n-2] +a[n-5]-2*a[n-6]+a[n-7]; od; a; # G. C. Greubel, Sep 12 2019

CROSSREFS

Cf. A130497 (first differences).

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), this sequence (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Sequence in context: A181341 A174181 A298424 * A144679 A309679 A207890

Adjacent sequences:  A008809 A008810 A008811 * A008813 A008814 A008815

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms added by G. C. Greubel, Sep 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:50 EST 2019. Contains 329958 sequences. (Running on oeis4.)