|
|
A171238
|
|
Given M = triangle A122196 as an infinite lower triangular matrix, this sequence is Lim_{n=1..inf.} M^n.
|
|
6
|
|
|
1, 2, 5, 8, 16, 24, 40, 56, 88, 120, 176, 232, 328, 424, 576, 728, 968, 1208, 1568, 1928, 2464, 3000, 3768, 4536, 5632, 6728, 8248, 9768, 11864, 13960, 16784, 19608, 23400, 27192, 32192, 37192, 43760, 50328, 58824, 67320, 78280, 89240, 103200, 117160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A171238 also = polcoeff: (1,2,3,...)*(1,0,2,0,5,0,8,0,16,...).
Number of binary partitions of n into two kinds of parts. - Joerg Arndt, Feb 26 2015
Let the n-th convolution power of the sequence = B, with C = the aerated variant of B. It appears that B/C = the binomial sequence starting (1, 2n,...). Example: The sequence squared = (1, 4, 14, 36, 89, 192,...) = B; with C = (1, 0, 4, 0, 14, 0, 36,...). Then B/C = A000292: (1, 4, 10, 20, 35, 56,...). - Gary W. Adamson, Aug 15 2016
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
Given M = triangle A122196 as an infinite lower triangular matrix, this sequence is Lim_{n=1..inf.}, a left-shifted vector considered as a sequence.
From Wolfdieter Lang, Jul 15 2010: (Start)
O.g.f.: x*Q(x) with Q(x)*(1-x)^2 = Q(x^2), for the eigensequence M*Q = Q with the column o.g.f.s (x^(2*m))/(1-x)^2, m>=0, of M.
Recurrence for b(n):=a(n+1): b(n)=0 if n<0, b(0)=1; if n even then b(n) = b(n/2)+2*b(n-1)-b(n-2), else b(n) = 2*b(n-1)- b(n-2). (End)
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)* ... *(1- x^(2^k))* ...)^2. - Robert G. Wilson v, May 11 2012
Convolution square of A018819. - Michael Somos, Mar 28 2014
|
|
EXAMPLE
|
G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 16*x^5 + 24*x^6 + 40*x^7 + 56*x^8 + ...
|
|
MATHEMATICA
|
CoefficientList[ Series[ 1/ Product[1 - x^(2^i), {i, 0, 6}]^2, {x, 0, 60}], x] (* Robert G. Wilson v, May 11 2012 *)
|
|
CROSSREFS
|
Cf. A018819.
Cf. A000292
Sequence in context: A168470 A295998 A129299 * A096541 A226015 A137685
Adjacent sequences: A171235 A171236 A171237 * A171239 A171240 A171241
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Gary W. Adamson, Dec 05 2009
|
|
EXTENSIONS
|
More terms from Wolfdieter Lang, Jul 15 2010
|
|
STATUS
|
approved
|
|
|
|