login
A301472
Positive integers not of the form x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.
22
1, 2, 77, 154, 157, 173, 285, 308, 311, 314, 317, 346, 383, 397, 477, 493, 509, 557, 570, 616, 621, 634, 692, 701, 717, 727, 733, 757, 766, 794, 797, 877, 909, 954, 957, 986, 997, 1013, 1018, 1069, 1085, 1093, 1111, 1114, 1117, 1181, 1197, 1221, 1232, 1242, 1268, 1277, 1293
OFFSET
1,2
COMMENTS
It might seem that 1 is the only square in this sequence, but 5884015571^2 is also a term of this sequence.
See also A301471 for related information.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(1) = 1 and a(2) = 2 since x^2 + 2*y^2 + 3*2^z > 2 for all x,y,z = 0,1,2,....
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n], i], 1], 8]==5||Mod[Part[Part[f[n], i], 1], 8]==7)&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[Do[If[QQ[m-3*2^k], Goto[aa]], {k, 0, Log[2, m/3]}]; tab=Append[tab, m]; Label[aa], {m, 1, 1293}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 21 2018
STATUS
approved