login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087287
a(n) = Lucas(9*n).
11
2, 76, 5778, 439204, 33385282, 2537720636, 192900153618, 14662949395604, 1114577054219522, 84722519070079276, 6440026026380244498, 489526700523968661124, 37210469265847998489922, 2828485190904971853895196, 215002084978043708894524818, 16342986943522226847837781364, 1242282009792667284144565908482
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (76 + sqrt(5780))/2 = 76.01315561749...
a(0)/a(1) = 2/76, a(1)/a(2) = 76/5778, a(2)/a(3) = 5778/439204, a(3)/a(4) = 439204/33385282, etc.
Lim_{n->oo} a(n)/a(n+1) = 0.01315561749... = 2/(76 + sqrt(5780)) = (sqrt(5780) - 76)/2.
FORMULA
a(n) = 76a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 76.
a(n) = ((76 + sqrt(5780))/2)^n + ((76 - sqrt(5780))/2)^n.
a(n)^2 = a(2n) - 2 for n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 for n = 2, 4, 6, ....
G.f.: (2-76*x)/(1-76*x-x^2). - Philippe Deléham, Nov 02 2008
E.g.f.: 2*exp(38*x)*cosh(17*sqrt(5)*x). - Stefano Spezia, Jan 18 2025
EXAMPLE
a(4) = 33385282 = 76*a(3) + a(2) = 76*439204 + 5778 = ((76 + sqrt(5780))/2)^4 + ((76 - sqrt(5780))/2)^4 = 33385281.999999970046... + 0.000000029953... = 33385282.
MATHEMATICA
LucasL[9*Range[0, 20]] (* Paolo Xausa, Mar 04 2024 *)
PROG
(Magma) [ Lucas(9*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
(PARI) a(n)=fibonacci(9*n-1)+fibonacci(9*n+1) \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
Cf. A000032.
Sequence in context: A198651 A198658 A277298 * A349066 A266877 A301472
KEYWORD
easy,nonn,changed
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
EXTENSIONS
More terms from Vincenzo Librandi, Apr 14 2011
STATUS
approved