login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301471 Number of ways to write n^2 as x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers. 25
0, 1, 2, 1, 3, 4, 3, 1, 5, 4, 4, 4, 5, 4, 10, 1, 4, 7, 4, 4, 10, 4, 3, 4, 6, 6, 11, 4, 7, 10, 6, 1, 9, 5, 7, 7, 7, 6, 12, 4, 6, 12, 7, 4, 14, 4, 8, 4, 3, 8, 10, 6, 8, 13, 6, 4, 16, 8, 7, 10, 7, 6, 14, 1, 7, 11, 6, 5, 16, 9, 5, 7, 7, 7, 18, 6, 7, 14, 6, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Square Conjecture: a(n) > 0 for all n > 1. Moreover, for any integer n > 3 we can write n^2 as x^2 + 2*y^2 + 3*2^z, where x,y,z are nonnegative integers with y even and z > 1.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).
See also A301472 for the list of positive integers not of the form x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.
If n^2 = x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers, then it is easy to see that x is not divisible by 3.
The Square Conjecture implies that for each n = 1,2,3,... we can write 3*n^2 as x^2 + 2*y^2 + 2^z with x,y,z nonnegative integers. In fact, if (3*n)^2 = u^2 + 2*v^2 + 3*2^z with u,v,z integers and z >= 0, then u^2 == v^2 (mod 3) and thus we may assume u == v (mod 3) without loss of generality, hence 3*n^2 = (u^2+2*v^2)/3 + 2^z = x^2 + 2*y^2 + 2^z with x = (u+2*v)/3 and y = (u-v)/3 integers.
On March 25, 2018 Qing-Hu Hou at Tianjin Univ. finished his verification of the Square Conjecture for n <= 4*10^8. Then I used Hou's program to verify the conjecture for n <= 5*10^9. - Zhi-Wei Sun, Apr 10 2018
I have found a counterexample to the Square Conjecture, namely a(5884015571) = 0. Note that 5884015571 is the product of the three primes 7, 17 and 49445509. - Zhi-Wei Sun, Apr 15 2018
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 with 2^2 = 1^2 + 2*0^2 + 3*2^0.
a(3) = 2 with 3^2 = 2^2 + 2*1^2 + 3*2^0 = 1^2 + 2*1^2 + 3*2^1.
a(4) = 1 with 4^2 = 2^2 + 2*0^2 + 3*2^2.
a(1131599953) = 1 with 1131599953^2 = 316124933^2 + 2*768304458^2 + 3*2^6.
a(5884015571) = 0 since there are no nonnegative integers x,y,z such that x^2 + 2*y^2 + 3*2^z = 5884015571^2.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n], i], 1], 8]==5||Mod[Part[Part[f[n], i], 1], 8]==7)&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[QQ[n^2-3*2^k], Do[If[SQ[n^2-3*2^k-2x^2], r=r+1], {x, 0, Sqrt[(n^2-3*2^k)/2]}]], {k, 0, Log[2, n^2/3]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
Sequence in context: A187064 A367019 A193020 * A237124 A233547 A358193
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 21 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 11:14 EDT 2024. Contains 371936 sequences. (Running on oeis4.)