This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300362 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 2*y and (z + 2*w)/3 are squares and w is even. 30
 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 4, 2, 4, 1, 2, 2, 2, 3, 2, 1, 5, 1, 5, 2, 3, 3, 3, 1, 1, 2, 3, 1, 4, 3, 5, 1, 6, 6, 6, 1, 4, 6, 8, 2, 4, 4, 3, 1, 5, 3, 9, 1, 4, 4, 5, 3, 10, 4, 7, 3, 9, 2, 14, 2, 6, 2, 6, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 7, 9, 14, 19, 22, 26, 34, 41, 4^k*m (k = 0,1,... and m = 1, 2, 3, 5, 10, 11, 13, 15). LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..1000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018. EXAMPLE a(9) = 1 since 9^2 = 9^2 + 0^2 + 0^2 + 0^2 with 9 + 2*0 = 3^2 and 0 + 2*0 = 3*0^2. a(13) = 1 since 13^2 = 4^2 + 0^2 + 3^2 + 12^2 with 4 + 2*0 = 2^2 and 3 + 2*12 = 3*3^2. a(14) = 1 since 14^2 = 4^2 + 6^2 + 12^2 + 0^2 with 4 + 2*6 = 4^2 and 12 + 2*0 = 3*2^2. a(15) = 1 since 15^2 = 9^2 + 0^2 + 12^2 + 0^2 with 9 + 2*0 = 3^2 and 12 + 2*0 = 3*2^2. a(41) = 1 since 41 = 38^2 + 13^2 + 8^2 + 2^2 with 38 + 2*13 = 8^2 and 8 + 2*2 = 3*2^2. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={}; Do[r=0; Do[If[SQ[x+2y]&&SQ[(n^2-x^2-y^2-z^2)/4]&&SQ[(z+2*Sqrt[n^2-x^2-y^2-z^2])/3], r=r+1], {x, 0, n}, {y, 0, Sqrt[n^2-x^2]}, {z, 0, Sqrt[n^2-x^2-y^2]}]; tab=Append[tab, r], {n, 0, 80}]; Print[tab] CROSSREFS Cf. A000118, A000290, A271518, A281976, A299924, A300219, A300360. Sequence in context: A108465 A069347 A161606 * A248145 A171398 A113607 Adjacent sequences:  A300359 A300360 A300361 * A300363 A300364 A300365 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 04:30 EDT 2019. Contains 321481 sequences. (Running on oeis4.)