The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300711 a(n) = A000367(n)/A001067(n). 3
 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n. The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7. Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n. LINKS Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007) 405-441. FORMULA a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)). a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018 EXAMPLE a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132. MAPLE A300711 := proc(n) local P, F, f, divides; divides := (a, b) -> is(irem(b, a) = 0): P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018 MATHEMATICA Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}] PROG (Julia) using Nemo function A300711(n)     b = bernoulli(n)     div(numerator(b), numerator(b*QQ(1, n))) end [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018 CROSSREFS A111008 equals the first entries and slightly differs, see a(35). Cf. A000367, A001067, A193267, A195989, A300330. Sequence in context: A197733 A241018 A308090 * A111008 A065330 A140215 Adjacent sequences:  A300708 A300709 A300710 * A300712 A300713 A300714 KEYWORD nonn AUTHOR Bernd C. Kellner, Mar 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 16:27 EST 2020. Contains 331011 sequences. (Running on oeis4.)