

A300710


Decimal expansion of 17*Pi^8/161280.


2



1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(s)=(12^(s))*zeta(s).


LINKS

Table of n, a(n) for n=1..103.


FORMULA

Equals 17*A092736/161280.  Omar E. Pol, Mar 11 2018


EXAMPLE

1.0001551790252961193029872492957280415665429750613740...


MAPLE

evalf((17/161280)*Pi^8, 120)


MATHEMATICA

RealDigits[(17/161280)*Pi^8, 10, 120][[1]]


PROG

(PARI) default(realprecision, 120); (17/161280)*Pi^8
(MATLAB) format long; (17/161280)*pi^8


CROSSREFS

Cf. A092736, A111003, A300707, A300709.
Sequence in context: A190101 A097566 A154945 * A254347 A011094 A319569
Adjacent sequences: A300707 A300708 A300709 * A300711 A300712 A300713


KEYWORD

nonn,cons


AUTHOR

Iaroslav V. Blagouchine, Mar 11 2018


STATUS

approved



