The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065330 a(n) = max { k | gcd(n, k) = k and gcd(k, 6) = 1 }. 19
 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 25, 13, 1, 7, 29, 5, 31, 1, 11, 17, 35, 1, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 5, 61, 31, 7, 1, 65, 11, 67, 17, 23, 35, 71, 1, 73, 37, 25, 19, 77, 13, 79, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) > n^0.285. - Charles R Greathouse IV, May 21 2014 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 M. A. Bennett, M. Filaseta, and O. Trifonov, On the factorization of consecutive integers, J. Reine Angew. Math. 629 (2009), pp. 171-200. FORMULA a(n) * A065331(n) = n. Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=p^e, p>3. - Vladeta Jovovic, Nov 02 2001 A106799(n) = A001222(a(n)). - Reinhard Zumkeller, May 19 2005 a(1)=1; then a(2n)=a(n), a(2n+1)=a((2n+1)/3) if 2n+1 is divisible by 3, a(2n+1)=2n+1 otherwise. - Benoit Cloitre, Jun 04 2007 Dirichlet g.f. zeta(s-1)*(1-2^(1-s))*(1-3^(1-s))/ ( (1-2^(-s))*(1-3^(-s)) ). - R. J. Mathar, Jul 04 2011 a(n) = A038502(A000265(n)). - Reinhard Zumkeller, Jul 06 2011 a(n) = n/GCD(n,6^n). - Stanislav Sykora, Feb 08 2016 Sum_{k=1..n} a(k) ~ (1/4) * n^2. - Amiram Eldar, Oct 22 2022 EXAMPLE a(30) = 5. MAPLE A065330 := proc(n) local a, f, p, e ; a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; e := op(2, f) ; if p > 3 then a := a*p^e ; end if; end do: a ; end proc: # R. J. Mathar, Jul 12 2012 with(padic): a := n -> n/(2^ordp(n, 2)*3^ordp(n, 3)); seq(a(n), n=1..81); # Peter Luschny, Mar 25 2014 MATHEMATICA f[n_] := Times @@ (First@#^Last@# & /@ Select[FactorInteger@n, First@# != 2 && First@# != 3 &]); Array[f, 81] (* Robert G. Wilson v, Aug 18 2006 *) f[n_]:=Denominator[6^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *) Table[n / GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *) PROG (PARI) a(n)=if(n<2, 1, if(n%2, if(n%3, n, a(n/3)), a(n/2))) \\ Benoit Cloitre, Jun 04 2007 (PARI) a(n)=n\gcd(n, 6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016 (PARI) a(n)=n>>valuation(n, 2)/3^valuation(n, 3) \\ Charles R Greathouse IV, Mar 31 2016 (Haskell) a065330 = a038502 . a000265 -- Reinhard Zumkeller, Jul 06 2011 (Magma) [n div Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016 CROSSREFS Cf. A065331, A000265, A038502, A165725. Sequence in context: A308090 A300711 A111008 * A140215 A190643 A068328 Adjacent sequences: A065327 A065328 A065329 * A065331 A065332 A065333 KEYWORD mult,nonn AUTHOR Reinhard Zumkeller, Oct 29 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 20:47 EST 2022. Contains 358593 sequences. (Running on oeis4.)