This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065333 Characteristic function of 3-smooth numbers, i.e., numbers of the form 2^i*3^j (i, j >= 0). 17
 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = signum(A065332(n)), where signum = A057427. a(n) = if A065330(n) = 1 then 1 else 0 = 1 - signum(A065330(n) - 1). Dirichlet inverse of b(n) where b(n) = 0 except for: b(1) = b(6) = -b(2) = -b(3) = 1. - Alexander Adam, Dec 26 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 A. Pakapongpun, T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 9. FORMULA a(n) = if n = A003586(k) for some k then 1 else 0. a(n) = Product_{p prime and p|n} 0^floor(p/4). - Reinhard Zumkeller, Nov 19 2004 Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = 0 for prime p > 3. Dirichlet g.f. 1/(1-2^-s)/(1-3^-s). - Franklin T. Adams-Watters, Sep 01 2006 a(n) = 0^(A038502(A000265(n)) - 1). - Reinhard Zumkeller, Sep 28 2008 a(n) = Sum_{d|n} mu(6*d). - Benoit Cloitre, Oct 18 2009 MATHEMATICA a[n_] := Boole[ 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] == n]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 16 2013, after Charles R Greathouse IV *) PROG (PARI) a(n)=sumdiv(n, d, moebius(6*d)) \\ Benoit Cloitre, Oct 18 2009 (PARI) a(n)=3^valuation(n, 3)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 21:59 EDT 2019. Contains 327981 sequences. (Running on oeis4.)