login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292804 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

G.f. of column k: Product_{j>=1} (1+x^j)^(k^j).

A(n,k) = Sum_{i=0..k} C(k,i) * A319501(n,i).

EXAMPLE

A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.

Square array A(n,k) begins:

  1, 1,   1,     1,      1,      1,       1,       1, ...

  0, 1,   2,     3,      4,      5,       6,       7, ...

  0, 1,   5,    12,     22,     35,      51,      70, ...

  0, 2,  16,    55,    132,    260,     452,     721, ...

  0, 2,  42,   225,    729,   1805,    3777,    7042, ...

  0, 3, 116,   927,   4000,  12376,   31074,   67592, ...

  0, 4, 310,  3729,  21488,  83175,  250735,  636517, ...

  0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...

MAPLE

h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))

    end:

A:= (n, k)-> h(n$2, k):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];

A[n_, k_] := h[n, n, k];

Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, Jun 03 2018, from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000009, A102866, A256142, A292838, A292839, A292840, A292841, A292842, A292843, A292844.

Rows n=0-2 give: A000012, A001477, A000326.

Main diagonal gives A292805.

Cf. A144074, A292795, A319501.

Sequence in context: A286933 A295860 A118345 * A118350 A183135 A294042

Adjacent sequences:  A292801 A292802 A292803 * A292805 A292806 A292807

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 00:41 EDT 2019. Contains 323427 sequences. (Running on oeis4.)