login
A292842
Number of sets of nonempty words with a total of n letters over 8-ary alphabet.
3
1, 8, 92, 1080, 12070, 132408, 1425372, 15114504, 158210353, 1637612160, 16784647360, 170537275776, 1719204122528, 17209440777600, 171165585295552, 1692447401221248, 16644429470981928, 162875924564677824, 1586486181338263456, 15386713233832145728
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(8^j).
a(n) ~ 8^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(8^(m-1)-1)) = 0.066582557989772785055691589503818396917... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(8^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
CROSSREFS
Column k=8 of A292804.
Sequence in context: A155615 A322650 A221765 * A133271 A180903 A266427
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved