login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290353 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x. 21
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k.  A(3,3) = 6:

:    o        o       o        o        o       o

:    |        |       |       / \      / \     /|\

:    o        o       o      o   o    o   o   o o o

:    |       / \     /|\     |   |   ( )  |   | | |

:    o      o   o   o o o    o   o   o o  o   o o o

:   /|\    ( )  |   | | |   ( )  |   | |  |   | | |

:  o o o   o o  o   o o o   o o  o   o o  o   o o o

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

Index entries for sequences related to rooted trees

FORMULA

G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).

EXAMPLE

Square array A(n,k) begins:

  1, 1,  1,   1,    1,    1,     1,     1,      1, ...

  1, 1,  1,   1,    1,    1,     1,     1,      1, ...

  0, 1,  2,   3,    4,    5,     6,     7,      8, ...

  0, 1,  3,   6,   10,   15,    21,    28,     36, ...

  0, 1,  5,  14,   30,   55,    91,   140,    204, ...

  0, 1,  7,  27,   75,  170,   336,   602,   1002, ...

  0, 1, 11,  58,  206,  571,  1337,  2772,   5244, ...

  0, 1, 15, 111,  518, 1789,  5026, 12166,  26328, ...

  0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...

MAPLE

with(numtheory):

A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(

      add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))

    end:

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)

CROSSREFS

Columns k=1-10 give: A000012, A000041, A001970, A007713, A007714, A290355, A290356, A290357, A290358, A290359.

Rows 0+1,2-10 give: A000012, A001477, A000217, A000330, A007715, A290360, A290361, A290362, A290363, A290364.

Main diagonal gives A290354.

Cf. A144150.

Sequence in context: A192517 A083856 A081718 * A263857 A198062 A226690

Adjacent sequences:  A290350 A290351 A290352 * A290354 A290355 A290356

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 12:43 EDT 2019. Contains 321430 sequences. (Running on oeis4.)