login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007715 Number of 5-leaf rooted trees with n levels. 2
1, 7, 27, 75, 170, 336, 602, 1002, 1575, 2365, 3421, 4797, 6552, 8750, 11460, 14756, 18717, 23427, 28975, 35455, 42966, 51612, 61502, 72750, 85475, 99801, 115857, 133777, 153700, 175770, 200136, 226952, 256377, 288575, 323715, 361971, 403522, 448552, 497250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5000

B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

Index entries for sequences related to rooted trees

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

Expansion of x*(1+2x+2x^2)/(1-x)^5.

a(n) = n*(n+1)*(5*n^2+n+6)/24. - T. D. Noe, Feb 09 2007

a(1)=1, a(2)=7, a(3)=27, a(4)=75, a(5)=170, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Jul 20 2011

a(n) = n*A000217(n) - sum((n-3*i)*A000217(i), i=0..n-1). - Bruno Berselli, Jun 22 2013

EXAMPLE

a(7) = 7*28 - (7*0+4*1+1*3-2*6-5*10-8*15-11*21) = 602. - Bruno Berselli, Jun 22 2013

MATHEMATICA

Table[n(n+1)(5n^2+n+6)/24, {n, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 7, 27, 75, 170}, 40] (* Harvey P. Dale, Jul 20 2011 *)

PROG

(MAGMA) [n*(n+1)*(5*n^2+n+6)/24: n in [1..45]]; // Vincenzo Librandi, Jul 21 2011

CROSSREFS

Row n=5 of A290353.

Sequence in context: A159065 A098931 A143690 * A161439 A039623 A162210

Adjacent sequences:  A007712 A007713 A007714 * A007716 A007717 A007718

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 05:25 EDT 2019. Contains 323579 sequences. (Running on oeis4.)