login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290364 Number of 10-leaf rooted trees with n levels. 2
0, 1, 42, 817, 8429, 55627, 268272, 1030101, 3331117, 9425128, 23970089, 55880968, 121188860, 247272012, 478904297, 886654486, 1578265414, 2713745819, 4525019252, 7341094011, 11619845543, 17987638185, 27288156478, 40641967587, 59518495595, 85822255610 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

Index entries for sequences related to rooted trees

Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

FORMULA

G.f.: (13*x^7+312*x^6+1835*x^5+3272*x^4+2029*x^3+442*x^2+32*x+1)*x / (x-1)^10.

a(n) = (7936*n^9 +4635*n^8 +24756*n^7 +43974*n^6 +65352*n^5 +60795*n^4 +81524*n^3 +72036*n^2 +1872*n)/9!.

MAPLE

a:= n-> ((((((((7936*n+4635)*n+24756)*n+43974)*n+65352)*n

         +60795)*n+81524)*n+72036)*n+1872)*n/9!:

seq(a(n), n=0..40);

MATHEMATICA

LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 42, 817, 8429, 55627, 268272, 1030101, 3331117, 9425128}, 30] (* Harvey P. Dale, Jan 09 2019 *)

CROSSREFS

Row n=10 of A290353.

Sequence in context: A020933 A241923 A231162 * A030020 A090969 A010958

Adjacent sequences:  A290361 A290362 A290363 * A290365 A290366 A290367

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Jul 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 21:34 EDT 2019. Contains 321382 sequences. (Running on oeis4.)