login
A288272
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 4.
10
12317877, 792534015, 26225260226, 600398249550, 10743797911132, 160576594766588, 2089035241981688, 24325590127655531, 258634264294653390, 2548272396065512974, 23532893106071038404, 205518653220527665304, 1709552077642556424368, 13623964536133602210560, 104522878918062035228512
OFFSET
9,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
FORMULA
G.f.: y*(y-1)^9*(225225*y^8 + 25467156*y^7 + 207300366*y^6 + 77853486*y^5 - 660073489*y^4 + 222312257*y^3 + 269246651*y^2 - 140048085*y + 10034310)/(y-2)^26, where y=A000108(x).
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 4];
Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 16 2018 *)
CROSSREFS
Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, this sequence, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 2 of A269924.
Cf. A000108.
Sequence in context: A022217 A133373 A321987 * A247831 A161592 A164338
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 08 2017
STATUS
approved