OFFSET
1,1
COMMENTS
Trajectory of 12334444 under the RATS function A036839.
John Conway calls this sequence "the creeper" and conjectures that the RATS trajectory of every n >= 1 eventually enters a cycle or the creeper. David Wilson confirms this conjecture for n <= 10^10.
Continues with the obvious digital pattern.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, RATS Sequence
Index entries for linear recurrences with constant coefficients, signature (0,11,0,-10).
FORMULA
a(n+2) = 10 a(n) - 9996 (n odd)
a(n+2) = 10 a(n) - 9993 (n even)
a(n+4) = 11 a(n+2) - 10 a(n)
a(n + 1) = A036839(a(n)). [Reinhard Zumkeller, Mar 14 2012]
G.f.: x*(-55677770*x^3 - 12344440*x^2 + 55667777*x + 12334444)/(10*x^4 - 11*x^2 + 1). - Chai Wah Wu, Feb 08 2020
PROG
(Haskell)
a164338 n = a164338_list !! (n-1)
a164338_list = iterate a036839 12334444
-- Reinhard Zumkeller, Mar 14 2012
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
David W. Wilson, Aug 13 2009
STATUS
approved