This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269924 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4. 13
 225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 8,1 COMMENTS Row n contains n-7 terms. LINKS Gheorghe Coserea, Rows n = 8..208, flattened Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014. EXAMPLE Triangle starts: n\f  [1]           [2]           [3]           [4] [8]  225225; [9]  12317877,     12317877; [10] 351683046,    792534015,    351683046; [11] 7034538511,   26225260226,  26225260226,  7034538511; [12] ... MATHEMATICA Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *) PROG (PARI) N = 14; G = 4; gmax(n) = min(n\2, G); Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = {   Qset(0, 0, x);   for (n = 1, length(Q)-1, for (g = 0, gmax(n),     my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),        t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),        t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,        (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));     Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x); concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G)))) CROSSREFS Columns f=1-10 give: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10. Cf. A035309, A269921, A269922, A269923, A269925, A270406, A270407, A270408, A270409, A270410, A270412. Row sums give A215402 (column 4 of A269919). Sequence in context: A269116 A252394 A237848 * A288271 A215402 A204743 Adjacent sequences:  A269921 A269922 A269923 * A269925 A269926 A269927 KEYWORD nonn,tabl AUTHOR Gheorghe Coserea, Mar 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 01:07 EST 2019. Contains 329910 sequences. (Running on oeis4.)