login
A288280
a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 4.
10
15894791312284170, 2548272396065512974, 197822824662547694148, 10071757699155275906824, 382217975972687580876304, 11612741439751867739074432, 295680368360952875467454880, 6512251870890866709301451550, 126977551039680427095997314540, 2230836871835420574103711453068
OFFSET
17,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
FORMULA
G.f.: 2*y*(y-1)^17*(667113335854505289*y^16 + 17412039201241985652*y^15 + 101949739105950626070*y^14 - 30202970169901595562*y^13 - 833532476362240891879*y^12 + 447114036864981439647*y^11 + 2316066844919602997013*y^10 - 2673632819222127570107*y^9 - 1088786810085394834566*y^8 + 3157924186313124711792*y^7 - 1371258409341666011952*y^6 - 433458368694714259536*y^5 + 515333809963509426144*y^4 - 126279314363368987008*y^3 - 3637814234318456832*y^2 + 4694513255143047936*y - 365353090019990016)/(y-2)^50, where y=A000108(x).
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 10, 4];
Table[a[n], {n, 17, 26}] (* Jean-François Alcover, Oct 16 2018 *)
CROSSREFS
Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, this sequence.
Column 10 of A269924.
Cf. A000108.
Sequence in context: A141621 A095432 A238358 * A185434 A172655 A288287
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 08 2017
STATUS
approved