The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286957 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + k*x^j). 5
 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 2, 0, 1, 4, 3, 6, 2, 0, 1, 5, 4, 12, 6, 3, 0, 1, 6, 5, 20, 12, 10, 4, 0, 1, 7, 6, 30, 20, 21, 18, 5, 0, 1, 8, 7, 42, 30, 36, 48, 22, 6, 0, 1, 9, 8, 56, 42, 55, 100, 57, 30, 8, 0, 1, 10, 9, 72, 56, 78, 180, 116, 84, 42, 10, 0, 1, 11, 10, 90, 72, 105, 294, 205, 180, 120, 66, 12, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS A(n,k) is the number of partitions of n into distinct parts of k sorts: the parts are unordered, but not the sorts. LINKS Seiichi Manyama, Antidiagonals n = 0..139, flattened FORMULA G.f. of column k: Product_{j>=1} (1 + k*x^j). EXAMPLE Square array begins: 1,  1,   1,   1,   1,   1,  ... 0,  1,   2,   3,   4,   5,  ... 0,  1,   2,   3,   4,   5,  ... 0,  2,   6,  12,  20,  30,  ... 0,  2,   6,  12,  20,  30,  ... 0,  3,  10,  21,  36,  55,  ... MATHEMATICA Table[Function[k, SeriesCoefficient[Product[(1 + k x^i), {i, 1, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten Table[Function[k, SeriesCoefficient[QPochhammer[-k, x]/(1 + k), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten CROSSREFS Columns k=0-5 give: A000007, A000009, A032302, A032308, A261568, A261569. Main diagonal gives A291698. Cf. A246935. Sequence in context: A175804 A241063 A340251 * A195017 A078806 A173438 Adjacent sequences:  A286954 A286955 A286956 * A286958 A286959 A286960 KEYWORD nonn,tabl AUTHOR Ilya Gutkovskiy, May 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 18:48 EDT 2021. Contains 342951 sequences. (Running on oeis4.)