This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175804 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the n-th term of the k-th differences of partition numbers A000041. 3
 1, 0, 1, 1, 1, 2, -1, 0, 1, 3, 2, 1, 1, 2, 5, -4, -2, -1, 0, 2, 7, 9, 5, 3, 2, 2, 4, 11, -21, -12, -7, -4, -2, 0, 4, 15, 49, 28, 16, 9, 5, 3, 3, 7, 22, -112, -63, -35, -19, -10, -5, -2, 1, 8, 30, 249, 137, 74, 39, 20, 10, 5, 3, 4, 12, 42, -539, -290, -153, -79, -40, -20, -10, -5, -2, 2, 14, 56 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Odlyzko showed that the k-th differences of A000041(n) alternate in sign with increasing n up to a certain index n_0(k) and then stay positive. LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181. Charles Knessl, Asymptotic Behavior of High-Order Differences of the Partition Function, Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045. A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), 237-254. FORMULA A(n,k) = (Delta^(k) A000041)(n). EXAMPLE Square array A(n,k) begins:    1,  0,  1, -1,  2,  -4,   9,  ...    1,  1,  0,  1, -2,   5, -12,  ...    2,  1,  1, -1,  3,  -7,  16,  ...    3,  2,  0,  2, -4,   9, -19,  ...    5,  2,  2, -2,  5, -10,  20,  ...    7,  4,  0,  3, -5,  10, -20,  ...   11,  4,  3, -2,  5, -10,  22,  ... MAPLE A41:= combinat[numbpart]: DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end: A:= (n, k)-> (DD@@k)(A41)(n): seq(seq(A(n, d-n), n=0..d), d=0..11); MATHEMATICA max = 11; a41 = Array[PartitionsP, max+1, 0]; a[n_, k_] := Differences[a41, k][[n+1]]; Table[a[n, k-n], {k, 0, max}, {n, 0, k}] // Flatten (* Jean-François Alcover, Aug 29 2014 *) CROSSREFS Columns k=0-5 give: A000041, A002865, A053445, A072380, A081094, A081095. Cf. A119712, A155861. Sequence in context: A118344 A119270 A267109 * A241063 A286957 A195017 Adjacent sequences:  A175801 A175802 A175803 * A175805 A175806 A175807 KEYWORD sign,tabl,look AUTHOR Alois P. Heinz, Dec 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.