login
A246935
Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
26
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
OFFSET
0,8
COMMENTS
In general, column k > 1 is asymptotic to c * k^n, where c = Product_{j>=1} 1/(1-1/k^j) = 1/QPochhammer[1/k,1/k]. - Vaclav Kotesovec, Mar 19 2015
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field of size k. - Geoffrey Critzer, Nov 11 2022
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
G.f. of column k: Product_{i>=1} 1/(1-k*x^i).
T(n,k) = Sum_{i=0..k} C(k,i) * A255970(n,i).
EXAMPLE
A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 12, 20, 30, 42, 56, ...
0, 3, 14, 39, 84, 155, 258, 399, ...
0, 5, 34, 129, 356, 805, 1590, 2849, ...
0, 7, 74, 399, 1444, 4055, 9582, 19999, ...
0, 11, 166, 1245, 5876, 20455, 57786, 140441, ...
0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
CROSSREFS
Rows n=0-4 give: A000012, A001477, A002378, A027444, A186636.
Main diagonal gives A124577.
Sequence in context: A292870 A306704 A091063 * A342120 A198793 A085388
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 08 2014
STATUS
approved