login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261569 Expansion of Product_{k>=1} (1 + 5*x^k). 5
1, 5, 5, 30, 30, 55, 180, 205, 330, 480, 1230, 1380, 2255, 3030, 4530, 8555, 10680, 15330, 21330, 29730, 39480, 67380, 81505, 116280, 153030, 210930, 270805, 370080, 534330, 675480, 900480, 1180380, 1544130, 1997280, 2597280, 3304805, 4581180, 5653080 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(6*Pi)*n^(3/4)), where c = Pi^2/6 + log(5)^2/2 + polylog(2, -1/5) = 2.74927912606080829002558751537626864449... . - Vaclav Kotesovec, Jan 04 2016

G.f.: Sum_{i>=0} 5^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

MAPLE

b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,

      `if`(n=0, 1, b(n, i-1)+`if`(i>n, 0, 5*b(n-i, i-1))))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015

MATHEMATICA

nmax = 40; CoefficientList[Series[Product[1 + 5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*5^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)

(QPochhammer[-5, x]/6 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

CROSSREFS

Cf. A000009, A032302, A032308, A261568, A291698.

Sequence in context: A284182 A020551 A153271 * A117858 A014434 A106830

Adjacent sequences:  A261566 A261567 A261568 * A261570 A261571 A261572

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)