The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274076 T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence. 10
 -2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Triangle read by rows ( see examples ). The denominators are given in A274078. The rational triangle A273506 / A273507 gives the coefficients for an exact solution of the plane pendulum's phase space trajectory. Differential time dependence for this solution also adheres to the simple form of a triangular summation: dt = dQ(-1+ sum k^n * (T(n, m)/A274078(n, m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. Expanding powers of cosine ( Cf. A273496 ) it is relatively easy to integrate dt ( cf. A274130 ). One period of motion takes Q through the range [ 0 , -2 pi]. Integrating dt over this domain gives another (Cf. A273506) calculation of the series expansion for Elliptic K ( see examples and Mathematica function dtToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016). LINKS Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016. EXAMPLE The triangle T(n, m) begins: n/m  1    2     3     4 ------------------------------ 1  | -2 2  |  2, -2 3  | -4,  8,  -20 4  |  2, -58,  14,  -70 ------------------------------ The rational triangle T(n, m) / A274078(n, m) begins: n/m    1        2         3       4 ------------------------------------------ 1  | -2/3 2  |  2/15,   -2/3 3  | -4/315,   8/27,   -20/27 4  |  2/2835, -58/945,  14/27,  -70/81 ------------------------------------------ dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k +  ((2/15) cos(Q)^6  - (2/3) cos(Q)^8) k^2 ) + ... dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ... (2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) =  1 + (1/4) k + (9/64) k^2+ ... MATHEMATICA R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][    Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]] dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ] Flatten[Numerator[dtCoefficients[10]]] dtToEllK[5] CROSSREFS Denominators: A274078. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496. Sequence in context: A102831 A262568 A183388 * A160179 A021822 A153986 Adjacent sequences:  A274073 A274074 A274075 * A274077 A274078 A274079 KEYWORD sign,tabl,frac AUTHOR Bradley Klee, Jun 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 06:34 EST 2020. Contains 331033 sequences. (Running on oeis4.)