login
A274077
a(n) = n^3 + 4.
1
4, 5, 12, 31, 68, 129, 220, 347, 516, 733, 1004, 1335, 1732, 2201, 2748, 3379, 4100, 4917, 5836, 6863, 8004, 9265, 10652, 12171, 13828, 15629, 17580, 19687, 21956, 24393, 27004, 29795, 32772, 35941, 39308, 42879, 46660, 50657, 54876, 59323, 64004, 68925
OFFSET
0,1
FORMULA
O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - Robert Israel, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
MAPLE
seq(n^3+4, n=0..100); # Robert Israel, Jun 09 2016
MATHEMATICA
Table[n^3 + 4, {n, 0, 60}]
Range[0, 50]^3+4 (* or *) LinearRecurrence[{4, -6, 4, -1}, {4, 5, 12, 31}, 50] (* Harvey P. Dale, Jul 01 2017 *)
PROG
(Magma) [n^3+4: n in [0..50]];
(PARI) a(n) = n^3 + 4 \\ Felix Fröhlich, Jun 09 2016
CROSSREFS
Sequences of the type n^3+k: A000578 (k=0), A001093 (k=1), A084380 (k=2), A084378 (k=3), this sequence (k=4), A084381 (k=5), A084382 (k=6), A084377 (k=7).
Sequence in context: A308775 A305335 A123102 * A028272 A003969 A326828
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 09 2016
STATUS
approved