login
A084380
a(n) = n^3 + 2.
8
2, 3, 10, 29, 66, 127, 218, 345, 514, 731, 1002, 1333, 1730, 2199, 2746, 3377, 4098, 4915, 5834, 6861, 8002, 9263, 10650, 12169, 13826, 15627, 17578, 19685, 21954, 24391, 27002, 29793, 32770, 35939, 39306, 42877, 46658, 50655, 54874, 59321, 64002
OFFSET
0,1
COMMENTS
This sequence contains no square numbers. A proof may be similar to the Hilliard link.
LINKS
Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
D. R. Heath-Brown, The largest prime factor of X^3 + 2, Proc. London Math. Soc. (3), 82:3 (2001), pp. 554-596.
A. J. Irving, The largest prime factor of X^3+2, arXiv:1412.0024 [math.NT], 2014.
FORMULA
G.f.: (2 - 5*x + 10*x^2 - x^3) / (x-1)^4 . - R. J. Mathar, Feb 16 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012
MATHEMATICA
f[n_]:=n^3+2; f[Range[60]] (* Offset 1. *) (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
CoefficientList[Series[(2-5*x+10*x^2-x^3)/(x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 24 2012 *)
PROG
(PARI) n3pm(n, m=2) = { for(x=0, n, y=x^3+m; print1(y, ", ")) }
(Magma) I:=[2, 3, 10, 29]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
CROSSREFS
Cf. sequences for n^3+7, n^3+17, n^3+3. Cf. A034324.
Sequence in context: A160909 A004980 A034324 * A363139 A286814 A371607
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 23 2003
EXTENSIONS
Extended to offset 0 by R. J. Mathar, Feb 16 2011
STATUS
approved