login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273506 T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory. 17
1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Triangle read by rows ( see examples ). The phase space trajectory of a simple pendulum can be written as (q,p) = (R(Q)cos(Q),R(Q)sin(Q)), with scaled, canonical coordinates q and p. The present triangle and A273507 determine a power / Fourier series of R(Q): R(Q) = sqrt(4 *k) * (1 + sum k^n * (A273506(n,m)/A273507(n,m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. The period of an oscillator can be computed by T(k) = dA/dE, where A is the phase area enclosed by the phase space trajectory of conserved, total energy E. As we choose expansion parameter "k" proportional to E, the series expansion of the complete elliptic integral of the first kind follows from T(k) with very little technical difficulty ( see examples and Mathematica function R2ToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

For some remarks on this pendulum problem and an alternative way to compute a(n,m) / A273507(n,m) using Lagrange inversion see the two W. Lang links. - Wolfdieter Lang, Jun 11 2016

LINKS

Table of n, a(n) for n=1..55.

Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph],  2016.

Wolfdieter Lang, Remarks on this entry and A273507

Wolfdieter Lang, Expansions for phase space coordinates for the plane pendulum

EXAMPLE

n/m  1    2     3     4

------------------------------

1  |  1

2  | -1,  7

3  |  1, -1,    11

4  | -1,  319, -143, 715

------------------------------

R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k +  (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2)

R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ...

I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ...

(2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ...

From Wolfdieter Lang, Jun 11 2016 (Start):

The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins:

n\m   1          2          3         4   ...

1:   1/6

2: -1/45        7/72

3:  1/630      -1/30      11/144

4: -1/14175   319/56700 -143/3240  715/10368

... ,

row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208,

row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496,

row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664,

row 8:

-1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872.

... (End)

MATHEMATICA

R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]

Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]

RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},

Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][

   Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]

RCoefficients[n_] :=  With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},

    Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],

       Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]

R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0}, k]

Flatten[Numerator@RCoefficients[10]]

R2ToEllK[10]

CROSSREFS

Denominators: A273507. Time Dependence: A274076, A274078, A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Sequence in context: A050179 A183352 A217510 * A287326 A131065 A081580

Adjacent sequences:  A273503 A273504 A273505 * A273507 A273508 A273509

KEYWORD

sign,tabl,frac

AUTHOR

Bradley Klee, May 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 22:47 EST 2020. Contains 331129 sequences. (Running on oeis4.)