The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056982 a(n) = 4^A005187(n). The denominators of the Landau constants. 31
 1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also equal to A046161(n)^2. Let W(n) = Product_{k=1..n} (1- 1/(4*k^2)), the partial Wallis product with lim n -> infinity W(n) = 2/Pi; a(n) = denominator(W(n)). The numerators are in A069955. Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n >= 1} 4*n^2/(4*n^2-1). Numerators are in A069955. Denominator of h^(2n) in the Kummer-Gauss series for the perimeter of an ellipse. Denominators of coefficients in hypergeometric([1/2,-1/2],[1],x). The numerators are given in A038535. hypergeom([1/2,-1/2],[1],e^2) = L/(2*Pi*a) with the perimeter L of an ellipse with major axis a and numerical eccentricity e (Maclaurin 1742). - Wolfdieter Lang, Nov 08 2010 Also denominators of coefficients in hypergeometric([1/2,1/2],[1],x). The numerators are given in A038534. - Wolfdieter Lang, May 29 2016 Also denominators of A277233. - Wolfdieter Lang, Nov 16 2016 A277233(n)/a(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019 REFERENCES J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997. O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77. LINKS Charles R Greathouse IV, Table of n, a(n) for n = 0..500 B. Gourevitch, L'univers de Pi Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the Hathi Trust Digital Library.] Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung), Arch. Math. Phys. 21 (1913), 250-255.  [Accessible in the USA through the Hathi Trust Digital Library.] Cristinel Mortici, Sharp bounds of the Landau constants, Math. Comp. 80 (2011), pp. 1011-1018. G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318. Eric Weisstein's World of Mathematics, Gauss-Kummer Series Eric Weisstein's World of Mathematics, Ellipse FORMULA a(n) = (denominator(binomial(1/2, n)))^2. - Peter Luschny, Sep 27 2019 MAPLE A056982 := n -> denom(binomial(1/2, n))^2: seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016 # Alternatively: G := proc(x) hypergeom([1/2, 1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20): [seq(coeff(ser, x, n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019 MATHEMATICA Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *) G[x_] := (2 EllipticK[x])/(Pi (1 - x)); CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *) PROG (PARI) a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012 CROSSREFS Apart from offset, identical to A110258. Cf. A005187, A046161, A056981, A069955. Equals (1/2)*A038533(n), A038534, A277233. Cf. A001790/A046161. Sequence in context: A056229 A062271 A110258 * A030994 A299147 A141046 Adjacent sequences:  A056979 A056980 A056981 * A056983 A056984 A056985 KEYWORD nonn,frac AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Feb 18 2004, Jun 05 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 12:34 EST 2020. Contains 332018 sequences. (Running on oeis4.)