login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5. 13
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

10,1

COMMENTS

Row n contains n-9 terms.

LINKS

Gheorghe Coserea, Rows n = 10..210, flattened

Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.

EXAMPLE

Triangle starts:

n\f  [1]             [2]             [3]             [4]

[10] 59520825;

[11] 4304016990,     4304016990;

[12] 15895975422,    354949166565,   158959754226;

[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;

[14] ...

MATHEMATICA

Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;

Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-Fran├žois Alcover, Aug 10 2018 *)

PROG

(PARI)

N = 15; G = 5; gmax(n) = min(n\2, G);

Q = matrix(N + 1, N + 1);

Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };

Qset(n, g, v) = { Q[n+1, g+1] = v };

Quadric({x=1}) = {

  Qset(0, 0, x);

  for (n = 1, length(Q)-1, for (g = 0, gmax(n),

    my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),

       t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),

       t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,

       (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));

    Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));

};

Quadric('x);

concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

CROSSREFS

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.

Row sums give A238355 (column 5 of A269919).

Cf. A035309, A269921, A269922, A269923, A269924, A270406, A270407, A270408, A270409, A270410, A270411, A270412.

Sequence in context: A320211 A320220 A034644 * A288281 A238355 A104329

Adjacent sequences:  A269922 A269923 A269924 * A269926 A269927 A269928

KEYWORD

nonn,tabl

AUTHOR

Gheorghe Coserea, Mar 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:47 EST 2020. Contains 331172 sequences. (Running on oeis4.)