The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270408 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus g. 5
 5, 93, 1030, 420, 8885, 14065, 65954, 256116, 66066, 442610, 3392843, 3288327, 2762412, 36703824, 85421118, 17454580, 16322085, 344468530, 1558792200, 1171704435, 92400330, 2908358552, 22555934280, 40121261136, 7034538511, 505403910, 22620890127, 276221817810, 945068384880, 600398249550 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Row n contains floor((n-1)/2) terms. LINKS Gheorghe Coserea, Rows n = 3..103, flattened Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014. EXAMPLE Triangle starts: n\g    [0]          [1]          [2]          [3]          [4] [3]    5; [4]    93; [5]    1030,        420; [6]    8885,        14065; [7]    65954,       256116,      66066; [8]    442610,      3392843,     3288327; [9]    2762412,     36703824,    85421118,    17454580; [10]   16322085,    344468530,   1558792200,  1171704435; [11]   92400330,    2908358552,  22555934280, 40121261136, 7034538511; [12]   ... MATHEMATICA Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); T[n_, g_] := Q[n, 4, g]; Table[T[n, g], {n, 3, 12}, {g, 0, Quotient[n-1, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *) PROG (PARI) N = 11; F = 4; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = {   Qset(0, 0, x);   for (n = 1, length(Q)-1, for (g = 0, gmax(n),     my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),        t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),        t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,        (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));     Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)))) CROSSREFS Cf. A000365 (column 0). Sequence in context: A295407 A152283 A205344 * A000365 A209471 A012784 Adjacent sequences:  A270405 A270406 A270407 * A270409 A270410 A270411 KEYWORD nonn,tabf AUTHOR Gheorghe Coserea, Mar 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 22:47 EST 2020. Contains 331129 sequences. (Running on oeis4.)