The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269921 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 1. 15
 1, 10, 10, 70, 167, 70, 420, 1720, 1720, 420, 2310, 14065, 24164, 14065, 2310, 12012, 100156, 256116, 256116, 100156, 12012, 60060, 649950, 2278660, 3392843, 2278660, 649950, 60060, 291720, 3944928, 17970784, 36703824, 36703824, 17970784 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Row n contains n-1 terms. LINKS Gheorghe Coserea, Rows n = 2..202, flattened Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014. EXAMPLE Triangle starts: n\f    [1]      [2]      [3]      [4]      [5]      [6]      [7] [2]    1; [3]    10,      10; [4]    70,      167,     70; [5]    420,     1720,    1720,    420; [6]    2310,    14065,   24164,   14065,   2310; [7]    12012,   100156,  256116,  256116,  100156,  12012; [8]    60060,   649950,  2278660, 3392843, 2278660, 649950,  60060; [9]    ... MATHEMATICA M = 9; G = 1; gMax[n_] := Min[Quotient[n, 2], G]; Q = Array[0&, {M + 1, M + 1}]; Qget[n_, g_] := If[g < 0 || g > n/2, 0, Q[[n + 1, g + 1]]]; Qset[n_, g_, v_] := (Q[[n + 1, g + 1]] = v ); Quadric[x_] := (Qset[0, 0, x]; For[n = 1, n <= Length[Q] - 1, n++, For[g = 0, g <= gMax[n], g++, t1 = (1 + x)*(2*n - 1)/3 * Qget[n - 1, g]; t2 = (2*n - 3)*(2*n - 2)*(2*n - 1)/12 * Qget[n - 2, g - 1]; t3 = 1/2 * Sum[ Sum[(2*k - 1) * (2*(n - k) - 1) * Qget[k - 1, i] * Qget[n - k - 1, g - i], {i, 0, g}], {k, 1, n-1}]; Qset[n, g, (t1 + t2 + t3) * 6/(n+1)]]]); Quadric[x]; (List @@@ Table[Qget[n - 1 + 2*G, G] // Expand, {n, 1, M + 1 - 2*G}]) /. x -> 1 // Flatten (* Jean-François Alcover, Jun 13 2017, adapted from PARI *) PROG (PARI) N = 9; G = 1; gmax(n) = min(n\2, G); Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = {   Qset(0, 0, x);   for (n = 1, length(Q)-1, for (g = 0, gmax(n),     my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),        t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),        t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,        (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));     Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x); concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G)))) CROSSREFS Columns f=1-10 give: A002802 f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10. Row sums give A006300 (column 1 of A269919). Cf. A006297 (row maxima). Sequence in context: A056473 A241869 A243126 * A219797 A255744 A165831 Adjacent sequences:  A269918 A269919 A269920 * A269922 A269923 A269924 KEYWORD nonn,tabl AUTHOR Gheorghe Coserea, Mar 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 10:26 EST 2020. Contains 331105 sequences. (Running on oeis4.)