login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287048 a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 1. 9
291720, 22764165, 875029804, 22620890127, 448035881592, 7302676928666, 102432266545800, 1274461449989715, 14373136466094880, 149314477245194262, 1446563778096423816, 13196809961724011350, 114253624700659216080, 944690705838217837620, 7498935691376059259344, 57398464959432306918747 (list; graph; refs; listen; history; text; internal format)
OFFSET

9,1

LINKS

Table of n, a(n) for n=9..24.

Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.

MATHEMATICA

Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;

Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

a[n_] := Q[n, 8, 1];

Table[a[n], {n, 9, 25}] (* Jean-Fran├žois Alcover, Oct 18 2018 *)

PROG

(PARI)

A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);

A287048_ser(N) = {

  my(y = A000108_ser(N+1));

  y*(y-1)^9*(9370183*y^8 + 52321971*y^7 - 83853806*y^6 - 93946092*y^5 + 189910936*y^4 - 57493776*y^3 - 31383264*y^2 + 16878912*y - 1513344)/(y-2)^26;

};

Vec(A287048_ser(16))

CROSSREFS

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, this sequence, A288073 f=9, A288074 f=10.

Column 8 of A269921; column 1 of A270412.

Cf. A000108.

Sequence in context: A252992 A253532 A233988 * A168500 A104328 A219318

Adjacent sequences:  A287045 A287046 A287047 * A287049 A287050 A287051

KEYWORD

nonn

AUTHOR

Gheorghe Coserea, Jun 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 10:27 EST 2020. Contains 332209 sequences. (Running on oeis4.)