login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269922 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2. 14
21, 483, 483, 6468, 15018, 6468, 66066, 258972, 258972, 66066, 570570, 3288327, 5554188, 3288327, 570570, 4390386, 34374186, 85421118, 85421118, 34374186, 4390386, 31039008, 313530000, 1059255456, 1558792200, 1059255456, 313530000, 31039008 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

4,1

COMMENTS

Row n contains n-3 terms.

LINKS

Gheorghe Coserea, Rows n = 4..204, flattened

Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.

EXAMPLE

Triangle starts:

n\f  [1]        [2]        [3]        [4]        [5]        [6]

[4]  21;

[5]  483,       483;

[6]  6468,      15018,     6468;

[7]  66066,     258972,    258972,    66066;

[8]  570570,    3288327,   5554188,   3288327,   570570;

[9]  4390386,   34374186,  85421118,  85421118,  34374186,  4390386;

[10] ...

MATHEMATICA

Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;

Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

Table[Q[n, f, 2], {n, 4, 10}, {f, 1, n-3}] // Flatten (* Jean-Fran├žois Alcover, Aug 10 2018 *)

PROG

(PARI)

N = 10; G = 2; gmax(n) = min(n\2, G);

Q = matrix(N + 1, N + 1);

Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };

Qset(n, g, v) = { Q[n+1, g+1] = v };

Quadric({x=1}) = {

  Qset(0, 0, x);

  for (n = 1, length(Q)-1, for (g = 0, gmax(n),

    my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),

       t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),

       t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,

       (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));

    Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));

};

Quadric('x);

concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

CROSSREFS

Columns f=1-10 give: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, A288090 f=10.

Row sums give A006301 (column 2 of A269919).

Cf. A006299 (row maxima), A269921.

Sequence in context: A307600 A025603 A296586 * A006298 A089907 A015695

Adjacent sequences:  A269919 A269920 A269921 * A269923 A269924 A269925

KEYWORD

nonn,tabl

AUTHOR

Gheorghe Coserea, Mar 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 08:04 EST 2020. Contains 331337 sequences. (Running on oeis4.)