This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266389 Solution of the equation y(t) = 1, where function y(t) is defined in the Comments section. 12
 6, 2, 6, 3, 7, 1, 6, 6, 3, 3, 0, 6, 4, 5, 1, 6, 6, 5, 8, 9, 2, 9, 9, 7, 8, 5, 0, 4, 5, 0, 3, 9, 5, 6, 1, 1, 6, 7, 2, 0, 8, 3, 1, 7, 8, 9, 3, 9, 8, 6, 0, 1, 4, 1, 1, 6, 1, 7, 8, 9, 8, 5, 4, 4, 9, 1, 7, 5, 2, 1, 5, 3, 0, 0, 2, 4, 2, 7, 7, 6, 7, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For t in open interval (0,1) we have: y1(t) = t^2 * (1-t) * (18 + 36*t + 5*t^2). y2(t) = 2 * (3+t) * (1+2*t) * (1+3*t)^2. y(t)  = (1+2*t) / ((1+3*t)*(1-t)) * exp(-y1(t)/y2(t)) - 1. LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..54301 Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329. FORMULA y(A266389) = 1, where function t->y(t) is defined in the Comments section. EXAMPLE 0.62637166330... PROG (PARI) y1(t) = t^2 * (1-t) * (18 + 36*t + 5*t^2); y2(t) = 2 * (3+t) * (1+2*t) * (1+3*t)^2; y(t)  = (1+2*t) / ((1+3*t)*(1-t)) * exp(-y1(t)/y2(t)) - 1; N=83; default(realprecision, N+100); t0 = solve(t=.62, .63, y(t)-1); eval(Vec(Str(t0))[3..-101]) \\ Gheorghe Coserea, Sep 03 2017 CROSSREFS Cf. A266390, A266391, A266392. Sequence in context: A318385 A319262 A126664 * A198986 A236190 A198227 Adjacent sequences:  A266386 A266387 A266388 * A266390 A266391 A266392 KEYWORD nonn,cons AUTHOR Gheorghe Coserea, Dec 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:08 EDT 2019. Contains 326059 sequences. (Running on oeis4.)