The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266390 Decimal expansion of exponential growth rate of number of labeled planar graphs on n vertices. 11
 2, 7, 2, 2, 6, 8, 7, 7, 7, 6, 8, 5, 8, 8, 5, 7, 6, 4, 6, 7, 0, 7, 9, 4, 5, 8, 0, 5, 1, 4, 9, 4, 4, 5, 8, 2, 8, 7, 4, 8, 9, 8, 0, 1, 5, 8, 7, 7, 8, 6, 8, 3, 6, 0, 1, 0, 7, 2, 4, 0, 8, 6, 9, 4, 3, 6, 1, 9, 3, 3, 4, 9, 7, 6, 2, 6, 2, 3, 1, 3, 7, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Gheorghe Coserea, Table of n, a(n) for n = 2..51000 Omer Giménez, Marc Noy, Estimating the Growth Constant of Labelled Planar Graphs, Mathematics and Computer Science III, Part of the series Trends in Mathematics 2004, pp. 133-139. Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329. FORMULA Equals 1/R(A266389), where function t->R(t) is defined in the PARI code. A066537(n) ~ A266391 * A266390^n * n^(-7/2) * n!. EXAMPLE 27.2268777685... PROG (PARI) A266389= 0.6263716633; A1(t) = log(1+t) * (3*t-1) * (1+t)^3 / (16*t^3); A2(t) = log(1+2*t) * (1+3*t) * (1-t)^3 / (32*t^3); A3(t) = (1-t) * (185*t^4 + 698*t^3 - 217*t^2 - 160*t + 6); A4(t) = 64*t * (1+3*t)^2 * (3+t); A(t) = A1(t) + A2(t) + A3(t) / A4(t); R(t) = 1/16 * sqrt(1+3*t) * (1/t - 1)^3 * exp(A(t)); 1/R(A266389) CROSSREFS Cf. A066537, A266389, A266391. Sequence in context: A347236 A073246 A021790 * A171685 A011048 A307671 Adjacent sequences: A266387 A266388 A266389 * A266391 A266392 A266393 KEYWORD nonn,cons AUTHOR Gheorghe Coserea, Dec 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 12:01 EST 2023. Contains 359866 sequences. (Running on oeis4.)