login
A266387
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 322560.
1
0, 0, 0, 0, 0, 7, 42, 147, 392, 882, 1764, 3234, 5544, 9009, 14014, 21021, 30576, 43316, 59976, 81396, 108528, 142443, 184338, 235543, 297528, 371910, 460460, 565110, 687960, 831285, 997542, 1189377, 1409632, 1661352, 1947792, 2272424, 2638944, 3051279
OFFSET
1,6
COMMENTS
The sequence was discovered by enumerating all orbits of Aut(Z^7) and sorting the orbits as function of the infinity norm of the representative integer lattice points. This sequence is one of the 30 sequences that are obtained by classifying the orbits in a table with the rows being the infinity norm and the columns being the 30 cardinalities (1, 14, 84, 128, 168, 280, 448, 560, 672, 840, 896, 1680, 2240, 2688, 3360, 4480, 5376, 6720, 8960, 13440, 17920, 20160, 26880, 40320, 53760, 80640, 107520, 161280, 322560, 645120) generated by signed permutations of integer lattice points of Z^7.
The continued fraction expansion of this sequence is finite and simplifies to the g.f. 7*x^6/(1-x)^6 (see Mathematica). - Benedict W. J. Irwin, Feb 09 2016
FORMULA
From Colin Barker, Dec 29 2015: (Start)
a(n) = 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/120.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6.
G.f.: 7*x^6 / (1-x)^6.
(End)
MATHEMATICA
Join[{0, 0, 0, 0, 0}, Table[Abs[SeriesCoefficient[Series[7/(x+6/(x - 5/2/(x + ContinuedFractionK[If[Mod[k, 2] ==0, (7 + k/2)/(6 + 2 k), ((k + 1)/2 - 5)/(2 (k - 1) +6)], x, {k, 0, 8}]))), {x, Infinity, 101}], 2 n + 1]], {n, 0, 50}]] - (* Benedict W. J. Irwin, Feb 09 2016 *)
PROG
(PARI) concat(vector(5), Vec(7*x^6/(1-x)^6 + O(x^50))) \\ Colin Barker, May 04 2016
CROSSREFS
Other sequences that give the number of orbits of Aut(Z^7) as function of the infinity norm for different cardinalities of these orbits: A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
Sequence in context: A195320 A110451 A212144 * A008526 A057425 A248329
KEYWORD
nonn,easy
AUTHOR
STATUS
approved