login
A257138
Numbers n such that n, n+4, n+6, n+10, n+16, n+18, n+24, n+28, n+30, n+34, n+36, n+46 and n+48 are all prime.
27
1707898733581273, 3266590043460823, 4422879865247923, 10907318641689703, 32472302129057023, 52590359764282573, 60229684381540753, 67893346321234513, 93179596929433093, 115458868925574253, 140563537593599353, 142977538681261363, 148877505784397623, 166362638531783773, 232442516762530153, 236585787518684683, 255933372890105143, 317294052871840123, 325853825645632363, 337188071215909993, 344447962857168403
OFFSET
1,1
LINKS
Vladimir Vlesycit and Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..802 [first 21 terms from Vladimir Vlesycit, first 90 terms from Matt C. Anderson]
Tony Forbes and Norman Luhn, Smallest Prime k-tuplets
PROG
(PARI) Q=isprime;
isok(n) = Q(n) && Q(n+4) && Q(n+6) && Q(n+10) && Q(n+16) && Q(n+18) && Q(n+24) && Q(n+28) && Q(n+30) && Q(n+34) && Q(n+36) && Q(n+46) && Q(n+48); \\ Michel Marcus, Aug 04 2015
(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 10**16, 4, 6, 10, 16, 18, 24, 28, 30, 34, 36, 46, 48); # Dana Jacobsen, Oct 09 2015
CROSSREFS
Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, this sequence, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Sequence in context: A217683 A098099 A338442 * A288279 A318170 A204419
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(18) corrected by Matt C. Anderson, Aug 03 2015
STATUS
approved