login
A257168
Numbers n such that n, n+2, n+8, n+14, n+18, n+20, n+24, n+30, n+32, n+38, n+42, n+44, n+48 and n+50 are all prime.
27
79287805466244209, 2714623996387988519, 5012524663381750349, 6120794469172998449, 6195991854028811669, 6232932509314786109, 6808488664768715759, 10756418345074847279, 11319107721272355839, 12635619305675250719, 14028155447337025829, 14094050870111867489, 14603617704434643719, 14777669568340323479, 15420967329931107779, 16222575536498135639, 16624441191356313149, 17367037621075657349, 19289576760019250519
OFFSET
1,1
LINKS
Dana Jacobsen, Table of n, a(n) for n = 1..209 [first 75 terms computed by Betsis and Säfholm, Forbes, Vlesycit, and Waldvogel (1982-2009)]
Tony Forbes and Norman Luhn, Smallest Prime k-tuplets
Norman Luhn, Table of n, a(n) for n = 1..891 (up to 10^22).
PROG
(Perl) use bigint; use ntheory ":all"; say for sieve_prime_cluster(1, 10**17, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50); # Dana Jacobsen, Oct 18 2015
CROSSREFS
Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, this sequence.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Sequence in context: A083105 A246287 A115499 * A104837 A008923 A267076
KEYWORD
nonn
AUTHOR
STATUS
approved