This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20). 33
 5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are congruent to 179 (modulo 210). - Matt C. Anderson, May 26 2015 LINKS Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 1000 terms by Matt C. Anderson] T. Forbes, Prime k-tuplets MATHEMATICA Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *) PROG (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e9, 2, 8, 12, 14, 18, 20); # Dana Jacobsen, Sep 30 2015 (MAGMA) [p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015 (PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ Altug Alkan, Oct 01 2015 CROSSREFS Sequence in context: A045128 A229591 A161193 * A201252 A247402 A184080 Adjacent sequences:  A022007 A022008 A022009 * A022011 A022012 A022013 KEYWORD nonn AUTHOR EXTENSIONS More terms from a Maple program by Matt C. Anderson, Dec 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.