login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022006 Initial members p of prime quintuplets (p, p+2, p+6, p+8, p+12). 65
5, 11, 101, 1481, 16061, 19421, 21011, 22271, 43781, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A007530. - R. J. Mathar, Feb 10 2013

All terms, except for the first one, are congruent to 11 (modulo 30). - Matt C. Anderson, May 22 2015

LINKS

T. D. Noe and Matt C. Anderson, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

J. K. Andersen, Prime Records

T. Forbes, Prime k-tuplets

MATHEMATICA

lst={}; Do[p=Prime[n]; If[PrimeQ[p+2]&&PrimeQ[p+6]&&PrimeQ[p+8]&&PrimeQ[p+12], AppendTo[lst, p]], {n, 9!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)

Transpose[Select[Partition[Prime[Range[64000]], 5, 1], Differences[#] == {2, 4, 2, 4}&]][[1]] (* Harvey P. Dale, Dec 08 2014 *)

PROG

(PARI) forprime(p=2, 1e7, if(isprime(p+2)&&isprime(p+6)&&isprime(p+8)&&isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Jul 19 2011

(MAGMA) [p: p in PrimesUpTo(2*10^6) | IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) and IsPrime(p+12)]; // Vincenzo Librandi, May 23 2015

CROSSREFS

Sequence in context: A157967 A088268 A030085 * A201074 A056111 A090160

Adjacent sequences:  A022003 A022004 A022005 * A022007 A022008 A022009

KEYWORD

nonn

AUTHOR

Warut Roonguthai

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 15:19 EDT 2015. Contains 261092 sequences.