This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022009 Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20). 35
 11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211, 187029371, 190514321, 198453371 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015 Also the terms n of A276848 for which n == 1 (mod 10), see the comment in A276848 and A276826. All terms are obviously also congruent to 11 (modulo 30). - Vladimir Shevelev, Sep 21 2016 LINKS Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 1000 terms from Matt C. Anderson] Matt C. Anderson, table of prime k-tuplets. T. Forbes, Prime k-tuplets Vladimir Shevelev, Peter J. C. Moses, Constellations of primes generated by twin primes, arXiv:1610.03385 [math.NT], 2016. Eric W. Weisstein, Prime Constellation (MathWorld) MATHEMATICA Transpose[Select[Partition[Prime[Range[10400000]], 7, 1], Differences[#] == {2, 4, 2, 4, 6, 2}&]][[1]] (* Harvey P. Dale, Jul 13 2014 *) Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *) PROG (PARI) nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)    is(n)=if(n%30!=11 || !isprime(n) || !isprime(n+2), return(0)); my(p=n, q=n+2, k=2, f); while(p!=q && q-p<7, f=if(isprime(k++), nextprime, nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 30 2016 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e9, 2, 6, 8, 12, 18, 20); # Dana Jacobsen, Sep 30 2015 (MAGMA) [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [2, 6, 8, 12, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015 CROSSREFS Sequence in context: A055311 A116622 A013794 * A201249 A144837 A085017 Adjacent sequences:  A022006 A022007 A022008 * A022010 A022011 A022012 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.