login
A256680
Minimal most likely sum for a roll of n 4-sided dice.
4
0, 1, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157, 160, 162
OFFSET
0,3
COMMENTS
In fact ceiling(5n/2) and floor(5n/2) have the same probability.
a(n) equals A047215(n) except for n=1.
FORMULA
a(n) = floor(5*n/2), for n>=2; a(0)=0 and a(1)=1.
From Colin Barker, Apr 08 2015: (Start)
a(n) = (-1+(-1)^n+10*n)/4 for n>1.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>4.
G.f.: -x*(x^3-x^2-4*x-1) / ((x-1)^2*(x+1)).
(End)
EXAMPLE
For n=1, there are four equally likely outcomes, 1,2,3,4, and the smallest of these is 1, so a(1)=1.
MAPLE
a:= n-> iquo(5*n, 2) -`if`(n=1, 1, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 08 2015
MATHEMATICA
Join[{0, 1}, Table[Floor[5 n/2], {n, 2, 100}]]
PROG
(Magma) [n le 1 select n else Floor(5*n/2): n in [0..70]]; // Vincenzo Librandi, Apr 08 2015
(PARI) a(n)=if(n<2, n, 5*n\2) \\ Charles R Greathouse IV, Apr 08 2015
(PARI) concat(0, Vec(-x*(x^3-x^2-4*x-1)/((x-1)^2*(x+1)) + O(x^100))) \\ Colin Barker, Apr 08 2015
CROSSREFS
Sequence in context: A245270 A319267 A123122 * A293867 A129189 A066513
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Apr 08 2015
STATUS
approved