

A030123


Most likely total for a roll of n 6sided dice, choosing the smallest if there is a choice.


7



0, 1, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 122, 126, 129, 133, 136, 140, 143, 147, 150, 154, 157, 161, 164, 168, 171, 175, 178, 182, 185, 189, 192
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

In fact ceiling(7n/2) is just as likely as floor(7n/2), so sequence could equally well be A047345.  Henry Bottomley, Jan 19 2001. a(1) is the only exception to this rule.  Dmitry Kamenetsky, Nov 03 2017


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (corrected by Sean A. Irvine, Jan 18 2019)
Eric Weisstein's World of Mathematics, Dice.
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

a(n) = floor(7*n/2) for n >= 2.
From Colin Barker, Jun 09 2013: (Start)
a(n) = a(n1) + a(n2)  a(n3) for n >= 5.
G.f.: x  x^2 * (3*x^23*x7) / ((x1)^2*(x+1)). (End)


MAPLE

A030123:=n>floor(7*n/2): seq(A030123(n), n=2..100); # Wesley Ivan Hurt, Jan 23 2017


MATHEMATICA

CoefficientList[Series[(3 x^2  3 x  7)/((x  1)^2 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)


PROG

(MAGMA) I:=[7, 10, 14]; [n le 3 select I[n] else Self(n1)+Self(n2)Self(n3): n in [1..60]]; // Vincenzo Librandi, Oct 19 2013
(PARI) a(n)=7*n\2 \\ Charles R Greathouse IV, Oct 07 2015


CROSSREFS

Cf. A047355.
Sequence in context: A108980 A005526 A192292 * A191833 A020752 A134302
Adjacent sequences: A030120 A030121 A030122 * A030124 A030125 A030126


KEYWORD

nonn,easy


AUTHOR

Eric W. Weisstein


EXTENSIONS

a(0) and a(1) added by Dmitry Kamenetsky, Nov 03 2017


STATUS

approved



