login
A256682
Decimal expansion of the [negated] abscissa of the Gamma function local maximum in the interval [-5,-4].
7
4, 6, 5, 3, 2, 3, 7, 7, 6, 1, 7, 4, 3, 1, 4, 2, 4, 4, 1, 7, 1, 4, 5, 9, 8, 1, 5, 1, 1, 4, 8, 2, 0, 7, 3, 6, 3, 7, 1, 9, 0, 6, 9, 4, 1, 6, 1, 3, 3, 8, 6, 8, 5, 5, 5, 1, 7, 2, 5, 8, 6, 8, 0, 7, 9, 5, 4, 1, 5, 6, 5, 4, 0, 7, 5, 8, 8, 6, 7, 9, 1, 7, 0, 0, 3, 0, 9, 3, 6, 3, 8, 1, 7, 9, 4, 4, 6, 7, 6, 3, 8, 0, 1, 7, 3
OFFSET
1,1
FORMULA
Solution to PolyGamma(x) = 0 in the interval [-5,-4]
EXAMPLE
Gamma(-4.653237761743142441714598151148207363719069416133868555...)
= -0.05277963958731940076048357076290307426383130501056893...
MATHEMATICA
digits = 105; x0 = x /. FindRoot[PolyGamma[0, x] == 0, {x, -9/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
KEYWORD
nonn,cons
AUTHOR
STATUS
approved