login
A256681
Decimal expansion of the [negated] abscissa of the Gamma function local minimum in the interval [-4,-3].
11
3, 6, 3, 5, 2, 9, 3, 3, 6, 6, 4, 3, 6, 9, 0, 1, 0, 9, 7, 8, 3, 9, 1, 8, 1, 5, 6, 6, 9, 4, 6, 0, 1, 7, 7, 1, 3, 9, 4, 8, 4, 2, 3, 8, 6, 1, 1, 9, 3, 5, 3, 0, 7, 0, 8, 7, 4, 8, 4, 7, 9, 0, 0, 6, 7, 5, 5, 8, 9, 5, 9, 7, 8, 3, 8, 4, 9, 8, 8, 9, 6, 6, 4, 8, 4, 0, 5, 5, 8, 3, 9, 9, 8, 4, 6, 0, 0, 8, 0, 3, 6, 8, 3, 3
OFFSET
1,1
FORMULA
Solution to PolyGamma(x) = 0 in the interval [-4,-3].
EXAMPLE
Gamma(-3.6352933664369010978391815669460177139484238611935307...)
= 0.245127539834366250438230088857478287588513028833668283...
MATHEMATICA
digits = 104; x0 = x /. FindRoot[PolyGamma[x] == 0, {x, -7/2}, WorkingPrecision -> digits + 5]; RealDigits[x0, 10, digits] // First
KEYWORD
nonn,cons
AUTHOR
STATUS
approved