OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a Fibonacci number among 1, ..., (p-1)/2 which is a quadratic nonresidue modulo p.
(ii) For any n > 2, there is a prime q < prime(n) such that the q-th Fibonacci number is a quadratic nonresidue modulo prime(n).
(iii) For any odd prime p, there is a Lucas number (i.e., a term of A000032) smaller than p which is a quadratic nonresidue modulo p.
We have checked part (i) for all primes p < 3*10^9, part (ii) for n up to 10^8, and part (iii) for the first 10^7 primes.
See also A241604 for a sequence related to part (i) of the conjecture.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(3) = 1 since F(3) = 2 is a quadratic nonresidue modulo prime(3) = 5, where F(n) denotes the n-th Fibonacci number.
a(4) = 1 since F(4) = 3 is a quadratic nonresidue modulo prime(4) = 7.
a(5) = 1 since F(3) = 2 is a quadratic nonresidue modulo prime(5) = 11.
a(9) = 1 since F(5) = 5 is a quadratic nonresidue modulo prime(9) = 23.
MATHEMATICA
f[k_]:=Fibonacci[k]
Do[m=0; Do[If[f[k]>Prime[n]/2, Goto[aa]]; If[JacobiSymbol[f[k], Prime[n]]==-1, m=m+1]; Continue, {k, 2, (Prime[n]+1)/2}]; Label[aa]; Print[n, " ", m]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 25 2014
STATUS
approved