This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241604 Least Fibonacci number smaller than prime(n)/2 which is a quadratic nonresidue modulo prime(n), or 0 if such a Fibonacci number does not exist. 4
 0, 0, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 13, 5, 3, 2, 3, 5, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 21, 5, 2, 3, 2, 3, 2, 2, 3, 13, 13, 2, 3, 5, 2, 3, 2, 3, 2, 2, 2, 34, 5, 2, 2, 5, 2, 2, 3, 13, 3, 2, 2, 5, 2, 2, 3, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS According to the conjecture in A241568, a(n) should be positive for all n > 2. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014. EXAMPLE a(4) = 3 since the Fibonacci number F(4) = 3 < prime(4)/2 is a quadratic nonresidue modulo prime(4) = 7, but the Fibonacci numbers F(1) = F(2) = 1 and F(3) = 2 are quadratic residues modulo prime(4) = 7. MATHEMATICA f[k_]:=Fibonacci[k] Do[Do[If[f[k]>Prime[n]/2, Goto[bb]]; If[JacobiSymbol[f[k], Prime[n]]==-1, Print[n, " ", Fibonacci[k]]; Goto[aa]]; Continue, {k, 1, (Prime[n]+1)/2}]; Label[bb]; Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 80}] CROSSREFS Cf. A000040, A000045, A241568. Sequence in context: A182006 A085239 A242872 * A282900 A126014 A317420 Adjacent sequences:  A241601 A241602 A241603 * A241605 A241606 A241607 KEYWORD nonn AUTHOR Zhi-Wei Sun, Apr 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)